Nonmuscle tropomyosin from ascites tumor cell microvilli.

نویسندگان

  • Y C Liu
  • C A Carraway
  • K L Carraway
چکیده

Tropomyosin has been isolated from microvilli preparations from 13762 rat mammary adenocarcinoma ascites tumor cells by Triton extraction and pelleting of the microvillar microfilament core, extraction of the microfilament core with 1 M KCl, heat treatment, and hydroxyapatite chromatography. Three major isoforms, designated 31K-a (acidic), 31K-b (basic), and 29K, were identified as tropomyosins by two-dimensional isoelectric focusing-dodecyl sulfate electrophoresis, a urea shift on dodecyl sulfate electrophoresis, chemical cross-linking, amino acid analysis, and molecular weight determinations. The native (60,000) and subunit (31,000 and 29,000) molecular weights, the amino acid composition, and the stoichiometry for binding to F-actin (actin/tropomyosin, 6:1) were typical of nonmuscle tropomyosins. The amount of tropomyosin present in the microvilli preparations is sufficient to saturate about half of the microvillar F-actin. By two-dimensional isoelectric focusing-dodecyl sulfate electrophoresis, the 31K isoforms appeared similar to isoforms of normal rat kidney cells but the 29K isoform was apparently smaller than any normal rat kidney isoforms. All three isoforms bound to F-actin, but the 29K form bound most strongly. Its behavior was similar to that of muscle tropomyosin, exhibiting saturable binding as a function of both ionic strength and Mg2+ concentration. In contrast, the 31K isoforms bound more weakly and required higher concentrations of Mg2+ for binding than that required for saturation with 29K (4 mM). These results clearly indicate that nonmuscle tropomyosin isoforms from a single source and location (subplasmalemmal) in the cell can exhibit different properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chicken cardiac tropomyosin and a low-molecular-weight nonmuscle tropomyosin are related by alternative splicing.

We have isolated and characterized complementary DNAs (cDNAs) encoding chicken cardiac muscle tropomyosin and a low-molecular-weight nonmuscle tropomyosin. The cardiac muscle cDNA (pCHT-4) encodes a 284-amino acid protein that differs from chicken skeletal muscle alpha- and beta-tropomyosins throughout its length. The nonmuscle cDNA (pFT-C) encodes a 248-amino acid protein that is most similar ...

متن کامل

Ca2+-dependent interaction of S100A2 with muscle and nonmuscle tropomyosins.

Zero-length chemical crosslinking with 1-ethyl-3-[3-(dimethyl amino)propyl]carbodiimide (EDC) indicated an association of the Ca2+-binding protein S100A2 with tropomyosin (TM) in vitro. The mobility of the crosslinked product on SDS-PAGE gels indicated the formation of a 1:1 complex between S100A2 and TM and the interaction was Ca2+ dependent. Monoclonal antibodies were raised against S100A2 an...

متن کامل

Assembly of different isoforms of actin and tropomyosin into the skeletal tropomyosin-enriched microfilaments during differentiation of muscle cells in vitro

We have used a monoclonal antibody (CL2) directed against striated muscle isoforms of tropomyosin to selectively isolate a class of microfilaments (skeletal tropomyosin-enriched microfilaments) from differentiating muscle cells. This class of microfilaments differed from the one (tropomyosin-enriched microfilaments) isolated from the same cells by a monoclonal antibody (LCK16) recognizing all i...

متن کامل

Microfilaments and tropomyosin of cultured mammalian cells: isolation and characterization

Microfilaments were isolated from cultured mammalian cells, utilizing procedures similar to those for isolation of "native" thin filaments from muscle. Isolated microfilaments from rat embryo, baby hamster kidney (BHK- 21), and Swiss mouse 3T3 cells appeared structurally similar to muscle thin filaments, exhibiting long, 6 nm Diam profiles with a beaded, helical substructure. An arrowhead patte...

متن کامل

A novel tropomyosin isoform functions at the mitotic spindle and Golgi in Drosophila

Most eukaryotic cells express multiple isoforms of the actin-binding protein tropomyosin that help construct a variety of cytoskeletal networks. Only one nonmuscle tropomyosin (Tm1A) has previously been described in Drosophila, but developmental defects caused by insertion of P-elements near tropomyosin genes imply the existence of additional, nonmuscle isoforms. Using biochemical and molecular...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 261 10  شماره 

صفحات  -

تاریخ انتشار 1986